Tutorial: Solution of the heat equation with Dirichlet boundary conditions

We continue the previous tutorial on solving the heat equation with Neumann boundary conditions by looking at Dirichlet boundary conditions instead, resulting in a non-conservative production-destruction system.

Definition of the (non-conservative) production-destruction system

Consider the heat equation

\[\partial_t u(t,x) = \mu \partial_x^2 u(t,x),\quad u(0,x)=u_0(x),\]

with $μ ≥ 0$, $t≥ 0$, $x\in[0,1]$, and homogeneous Dirichlet boundary conditions. We use again a finite volume discretization, i.e., we split the domain $[0, 1]$ into $N$ uniform cells of width $\Delta x = 1 / N$. As degrees of freedom, we use the mean values of $u(t)$ in each cell approximated by the point value $u_i(t)$ in the center of cell $i$. Finally, we use the classical central finite difference discretization of the Laplacian with homogeneous Dirichlet boundary conditions, resulting in the ODE

\[\partial_t u(t) = L u(t), \quad L = \frac{\mu}{\Delta x^2} \begin{pmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & \ddots & \ddots & \ddots \\ && 1 & -2 & 1 \\ &&& 1 & -2 \end{pmatrix}.\]

The system can be written as a non-conservative PDS with production terms

\[\begin{aligned} &p_{i,i-1}(t,\mathbf u(t)) = \frac{\mu}{\Delta x^2} u_{i-1}(t),\quad i=2,\dots,N, \\ &p_{i,i+1}(t,\mathbf u(t)) = \frac{\mu}{\Delta x^2} u_{i+1}(t),\quad i=1,\dots,N-1, \end{aligned}\]

and destruction terms $d_{i,j} = p_{j,i}$ for $i \ne j$ as well as the non-conservative destruction terms

\[\begin{aligned} d_{1,1}(t,\mathbf u(t)) &= \frac{\mu}{\Delta x^2} u_{1}(t), \\ d_{N,N}(t,\mathbf u(t)) &= \frac{\mu}{\Delta x^2} u_{N}(t). \end{aligned}\]

In addition, all production and destruction terms not listed are zero.

Solution of the non-conservative production-destruction system

Now we are ready to define a PDSProblem and to solve this problem with a method of PositiveIntegrators.jl or OrdinaryDiffEq.jl. In the following we use $N = 100$ nodes and the time domain $t \in [0,1]$. Moreover, we choose the initial condition

\[u_0(x) = \sin(\pi x)^2.\]

x_boundaries = range(0, 1, length = 101)
x = x_boundaries[1:end-1] .+ step(x_boundaries) / 2
u0 = @. sinpi(x)^2 # initial solution
tspan = (0.0, 1.0) # time domain

We will choose three different matrix types for the production terms and the resulting linear systems:

  1. standard dense matrices (default)
  2. sparse matrices (from SparseArrays.jl)
  3. tridiagonal matrices (from LinearAlgebra.jl)

Standard dense matrices

using PositiveIntegrators # load ConservativePDSProblem

function heat_eq_P!(P, u, μ, t)
    fill!(P, 0)
    N = length(u)
    Δx = 1 / N
    μ_Δx2 = μ / Δx^2

    let i = 1
        # Dirichlet boundary condition
        P[i, i + 1] = u[i + 1] * μ_Δx2
    end

    for i in 2:(length(u) - 1)
        # interior stencil
        P[i, i - 1] = u[i - 1] * μ_Δx2
        P[i, i + 1] = u[i + 1] * μ_Δx2
    end

    let i = length(u)
        # Dirichlet boundary condition
        P[i, i - 1] = u[i - 1] * μ_Δx2
    end

    return nothing
end

function heat_eq_D!(D, u, μ, t)
    fill!(D, 0)
    N = length(u)
    Δx = 1 / N
    μ_Δx2 = μ / Δx^2

    # Dirichlet boundary condition
    D[begin] = u[begin] * μ_Δx2
    D[end] = u[end] * μ_Δx2

    return nothing
end

μ = 1.0e-2
prob = PDSProblem(heat_eq_P!, heat_eq_D!, u0, tspan, μ) # create the PDS

sol = solve(prob, MPRK22(1.0); save_everystep = false)
using Plots

plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol.u); label = "u")
Example block output

Sparse matrices

To use different matrix types for the production terms and linear systems, you can use the keyword argument p_prototype of ConservativePDSProblem and PDSProblem.

using SparseArrays
p_prototype = spdiagm(-1 => ones(eltype(u0), length(u0) - 1),
                      +1 => ones(eltype(u0), length(u0) - 1))
prob_sparse = PDSProblem(heat_eq_P!, heat_eq_D!, u0, tspan, μ;
                         p_prototype = p_prototype)

sol_sparse = solve(prob_sparse, MPRK22(1.0); save_everystep = false)
plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol_sparse.u); label = "u")
Example block output

Tridiagonal matrices

The sparse matrices used in this case have a very special structure since they are in fact tridiagonal matrices. Thus, we can also use the special matrix type Tridiagonal from the standard library LinearAlgebra.

using LinearAlgebra
p_prototype = Tridiagonal(ones(eltype(u0), length(u0) - 1),
                          ones(eltype(u0), length(u0)),
                          ones(eltype(u0), length(u0) - 1))
prob_tridiagonal = PDSProblem(heat_eq_P!, heat_eq_D!, u0, tspan, μ;
                              p_prototype = p_prototype)

sol_tridiagonal = solve(prob_tridiagonal, MPRK22(1.0); save_everystep = false)
plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol_tridiagonal.u); label = "u")
Example block output

Performance comparison

Finally, we use BenchmarkTools.jl to compare the performance of the different implementations.

using BenchmarkTools
@benchmark solve(prob, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 498 samples with 1 evaluation.
 Range (minmax):   9.505 ms22.440 ms   GC (min … max): 0.00% … 33.84%
 Time  (median):      9.700 ms               GC (median):    0.00%
 Time  (mean ± σ):   10.027 ms ±  1.119 ms   GC (mean ± σ):  1.27% ±  2.66%

   ▇█    ▃▄▂                                                  
  ▆███▆▆███▆▄▄▁▁▅▁▅▁▁▁▁▁▁▄▁▄▁▁▁▅▁▁▄▁▄▁▁▁▁▁▄▁▁▁▁▁▁▄▅▁▄▄▅▄▄▄▆ ▆
  9.51 ms      Histogram: log(frequency) by time      13.9 ms <

 Memory estimate: 10.20 MiB, allocs estimate: 431.
@benchmark solve(prob_sparse, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 760 samples with 1 evaluation.
 Range (minmax):  6.118 ms 13.066 ms   GC (min … max): 0.00% … 3.94%
 Time  (median):     6.280 ms                GC (median):    0.00%
 Time  (mean ± σ):   6.576 ms ± 623.204 μs   GC (mean ± σ):  1.50% ± 2.40%

    ▁▄█                                              
  ▃▆████▆▄▃▃▃▂▁▂▁▁▂▁▁▁▁▂▁▂▂▁▂▂▁▂▂▂▃▁▂▂▃▃▃▃▃▃▂▃▄▃▃▃▃▃▂▃▃▂▂▂▂ ▃
  6.12 ms         Histogram: frequency by time         7.9 ms <

 Memory estimate: 10.19 MiB, allocs estimate: 4881.

By default, we use an LU factorization for the linear systems. At the time of writing, Julia uses SparseArrays.jl defaulting to UMFPACK from SuiteSparse in this case. However, the linear systems do not necessarily have the structure for which UMFPACK is optimized for. Thus, it is often possible to gain performance by switching to KLU instead.

using LinearSolve
@benchmark solve(prob_sparse, MPRK22(1.0; linsolve = KLUFactorization()); save_everystep = false)
BenchmarkTools.Trial: 3451 samples with 1 evaluation.
 Range (minmax):  1.290 ms246.028 ms   GC (min … max): 0.00% … 98.70%
 Time  (median):     1.340 ms                GC (median):    0.00%
 Time  (mean ± σ):   1.446 ms ±   4.168 ms   GC (mean ± σ):  5.64% ±  4.20%

  ▆█▅▂▁▁▁▁▂                                                 ▁
  ██████████▆▃▅▃▅▃▃▆▅▅▆▅▆▅▆▁▅▆▅▅▁▃▁▁▁▁▃▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃ █
  1.29 ms      Histogram: log(frequency) by time      2.67 ms <

 Memory estimate: 545.62 KiB, allocs estimate: 637.
@benchmark solve(prob_tridiagonal, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 8955 samples with 1 evaluation.
 Range (minmax):  474.399 μs274.031 ms   GC (min … max): 0.00% … 99.78%
 Time  (median):     510.167 μs                GC (median):    0.00%
 Time  (mean ± σ):   556.075 μs ±   2.892 ms   GC (mean ± σ):  6.47% ±  4.91%

  ▂  ▆▆▄▃▁                       ▂                             ▁
  █▇▆██████▆▄▃▁▄▃▄▃▅▇▇▇▇▇▅▅▄▄▃▃▅██▇▇▆▅▁▁▁▁▁▁▃▁▁▁▁▁▁▃▁▁▁▁▁▁▄▆▇ █
  474 μs        Histogram: log(frequency) by time        962 μs <

 Memory estimate: 601.78 KiB, allocs estimate: 958.

Package versions

These results were obtained using the following versions.

using InteractiveUtils
versioninfo()
println()

using Pkg
Pkg.status(["PositiveIntegrators", "SparseArrays", "KLU", "LinearSolve", "OrdinaryDiffEq"],
           mode=PKGMODE_MANIFEST)
Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)
Environment:
  JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager

Status `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl/docs/Manifest.toml`
  [ef3ab10e] KLU v0.6.0
  [7ed4a6bd] LinearSolve v2.33.0
  [1dea7af3] OrdinaryDiffEq v6.89.0
  [d1b20bf0] PositiveIntegrators v0.2.6 `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl`
  [2f01184e] SparseArrays v1.10.0