Tutorial: Solution of the heat equation with Neumann boundary conditions

Similar to the tutorial on linear advection, we will demonstrate how to solve a conservative production-destruction system (PDS) resulting from a PDE discretization and means to improve the performance.

Definition of the conservative production-destruction system

Consider the heat equation

\[\partial_t u(t,x) = \mu \partial_x^2 u(t,x),\quad u(0,x)=u_0(x),\]

with $μ ≥ 0$, $t≥ 0$, $x\in[0,1]$, and homogeneous Neumann boundary conditions. We use a finite volume discretization, i.e., we split the domain $[0, 1]$ into $N$ uniform cells of width $\Delta x = 1 / N$. As degrees of freedom, we use the mean values of $u(t)$ in each cell approximated by the point value $u_i(t)$ in the center of cell $i$. Finally, we use the classical central finite difference discretization of the Laplacian with homogeneous Neumann boundary conditions, resulting in the ODE

\[\partial_t u(t) = L u(t), \quad L = \frac{\mu}{\Delta x^2} \begin{pmatrix} -1 & 1 \\ 1 & -2 & 1 \\ & \ddots & \ddots & \ddots \\ && 1 & -2 & 1 \\ &&& 1 & -1 \end{pmatrix}.\]

The system can be written as a conservative PDS with production terms

\[\begin{aligned} &p_{i,i-1}(t,\mathbf u(t)) = \frac{\mu}{\Delta x^2} u_{i-1}(t),\quad i=2,\dots,N, \\ &p_{i,i+1}(t,\mathbf u(t)) = \frac{\mu}{\Delta x^2} u_{i+1}(t),\quad i=1,\dots,N-1, \end{aligned}\]

and destruction terms $d_{i,j} = p_{j,i}$. In addition, all production and destruction terms not listed are zero.

Solution of the conservative production-destruction system

Now we are ready to define a ConservativePDSProblem and to solve this problem with a method of PositiveIntegrators.jl or OrdinaryDiffEq.jl. In the following we use $N = 100$ nodes and the time domain $t \in [0,1]$. Moreover, we choose the initial condition

\[u_0(x) = \cos(\pi x)^2.\]

x_boundaries = range(0, 1, length = 101)
x = x_boundaries[1:end-1] .+ step(x_boundaries) / 2
u0 = @. cospi(x)^2 # initial solution
tspan = (0.0, 1.0) # time domain

We will choose three different matrix types for the production terms and the resulting linear systems:

  1. standard dense matrices (default)
  2. sparse matrices (from SparseArrays.jl)
  3. tridiagonal matrices (from LinearAlgebra.jl)

Standard dense matrices

using PositiveIntegrators # load ConservativePDSProblem

function heat_eq_P!(P, u, μ, t)
    fill!(P, 0)
    N = length(u)
    Δx = 1 / N
    μ_Δx2 = μ / Δx^2

    let i = 1
        # Neumann boundary condition
        P[i, i + 1] = u[i + 1] * μ_Δx2
    end

    for i in 2:(length(u) - 1)
        # interior stencil
        P[i, i - 1] = u[i - 1] * μ_Δx2
        P[i, i + 1] = u[i + 1] * μ_Δx2
    end

    let i = length(u)
        # Neumann boundary condition
        P[i, i - 1] = u[i - 1] * μ_Δx2
    end

    return nothing
end

μ = 1.0e-2
prob = ConservativePDSProblem(heat_eq_P!, u0, tspan, μ) # create the PDS

sol = solve(prob, MPRK22(1.0); save_everystep = false)
using Plots

plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol.u); label = "u")
Example block output

Sparse matrices

To use different matrix types for the production terms and linear systems, you can use the keyword argument p_prototype of ConservativePDSProblem and PDSProblem.

using SparseArrays
p_prototype = spdiagm(-1 => ones(eltype(u0), length(u0) - 1),
                      +1 => ones(eltype(u0), length(u0) - 1))
prob_sparse = ConservativePDSProblem(heat_eq_P!, u0, tspan, μ;
                                     p_prototype = p_prototype)

sol_sparse = solve(prob_sparse, MPRK22(1.0); save_everystep = false)
plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol_sparse.u); label = "u")
Example block output

Tridiagonal matrices

The sparse matrices used in this case have a very special structure since they are in fact tridiagonal matrices. Thus, we can also use the special matrix type Tridiagonal from the standard library LinearAlgebra.

using LinearAlgebra
p_prototype = Tridiagonal(ones(eltype(u0), length(u0) - 1),
                          ones(eltype(u0), length(u0)),
                          ones(eltype(u0), length(u0) - 1))
prob_tridiagonal = ConservativePDSProblem(heat_eq_P!, u0, tspan, μ;
                                          p_prototype = p_prototype)

sol_tridiagonal = solve(prob_tridiagonal, MPRK22(1.0); save_everystep = false)
plot(x, u0; label = "u0", xguide = "x", yguide = "u")
plot!(x, last(sol_tridiagonal.u); label = "u")
Example block output

Performance comparison

Finally, we use BenchmarkTools.jl to compare the performance of the different implementations.

using BenchmarkTools
@benchmark solve(prob, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 1085 samples with 1 evaluation per sample.
 Range (minmax):  4.228 ms 28.333 ms   GC (min … max): 0.00% … 0.00%
 Time  (median):     4.405 ms                GC (median):    0.00%
 Time  (mean ± σ):   4.605 ms ± 994.576 μs   GC (mean ± σ):  3.36% ± 5.10%

  █▆▃▄ ▁▆▄▁                                                
  ██████▅█████▆▅▇▅▁▄▄▁▁▁▅▁▁▁▄▁▄▁▄▁▁▁▁▁▁▁▁▁▁▁▁▅█▇▆▅▅▄▁▁▄▁▁▁▄ █
  4.23 ms      Histogram: log(frequency) by time      7.11 ms <

 Memory estimate: 5.11 MiB, allocs estimate: 375.
@benchmark solve(prob_sparse, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 1509 samples with 1 evaluation per sample.
 Range (minmax):  3.043 ms 16.109 ms   GC (min … max): 0.00% … 3.51%
 Time  (median):     3.102 ms                GC (median):    0.00%
 Time  (mean ± σ):   3.311 ms ± 633.636 μs   GC (mean ± σ):  3.72% ± 5.41%

  ▅█▇▅▄▁▁                        ▄▅▄▂▁                        
  ███████▆▆▄▁▁▁▁▁▅▁▁▁▁▁▁▁▁▁▁▁▄▅▅██████▆▅▅▅▄▅▄▄▅▅▁▁▁▁▁▄▁▁▁▁▄ █
  3.04 ms      Histogram: log(frequency) by time      4.27 ms <

 Memory estimate: 5.06 MiB, allocs estimate: 2760.

By default, we use an LU factorization for the linear systems. At the time of writing, Julia uses SparseArrays.jl defaulting to UMFPACK from SuiteSparse in this case. However, the linear systems do not necessarily have the structure for which UMFPACK is optimized for. Thus, it is often possible to gain performance by switching to KLU instead.

using LinearSolve
@benchmark solve(prob_sparse, MPRK22(1.0; linsolve = KLUFactorization()); save_everystep = false)
BenchmarkTools.Trial: 7289 samples with 1 evaluation per sample.
 Range (minmax):  610.650 μs 15.676 ms   GC (min … max): 0.00% … 72.18%
 Time  (median):     642.239 μs                GC (median):    0.00%
 Time  (mean ± σ):   683.426 μs ± 413.279 μs   GC (mean ± σ):  3.74% ±  6.18%

  ▇ ▃▁                                                       ▁
  ████▆▅▄▁▃▁▄▃▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▃▃▁▁▁▁▁▃▃ █
  611 μs        Histogram: log(frequency) by time       2.19 ms <

 Memory estimate: 317.51 KiB, allocs estimate: 612.
@benchmark solve(prob_tridiagonal, MPRK22(1.0); save_everystep = false)
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
 Range (minmax):  215.532 μs 30.000 ms   GC (min … max): 0.00% … 99.13%
 Time  (median):     228.988 μs                GC (median):    0.00%
 Time  (mean ± σ):   270.944 μs ± 505.605 μs   GC (mean ± σ):  6.36% ±  7.37%

  ██                                                             
  ██▃▂▂▂▂▁▁▁▂▂▆▆▃▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▂▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂ ▂
  216 μs           Histogram: frequency by time          738 μs <

 Memory estimate: 300.09 KiB, allocs estimate: 834.

Package versions

These results were obtained using the following versions.

using InteractiveUtils
versioninfo()
println()

using Pkg
Pkg.status(["PositiveIntegrators", "SparseArrays", "KLU", "LinearSolve", "OrdinaryDiffEq"],
           mode=PKGMODE_MANIFEST)
Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)
Environment:
  JULIA_PKG_SERVER_REGISTRY_PREFERENCE = eager

Status `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl/docs/Manifest.toml`
  [ef3ab10e] KLU v0.6.0
  [7ed4a6bd] LinearSolve v2.38.0
  [1dea7af3] OrdinaryDiffEq v6.90.1
  [d1b20bf0] PositiveIntegrators v0.2.6 `~/work/PositiveIntegrators.jl/PositiveIntegrators.jl`
  [2f01184e] SparseArrays v1.11.0